6.System of Particles and Rotational Motion
medium

The oxygen molecule has a mass of $5.30 \times 10^{-26}\; kg$ and a moment of inertia of $1.94 \times 10^{-46}\; kg m ^{2}$ about an axis through its centre perpendicular to the lines jotning the two atoms. Suppose the mean speed of such a molecule in a gas is $500 \;m / s$ and that its kinetic energy of rotation is two thirds of its kinetic energy of translation. Find the average angular velocity of the molecule.

Option A
Option B
Option C
Option D

Solution

Mass of an oxygen molecule, $m=5.30 \times 10^{-26} kg$
Moment of inertia, $I=1.94 \times 10^{-46} kg m ^{2}$
Velocity of the oxygen molecule, $v=500 m / s$
The separation between the two atoms of the oxygen molecule $=2 r$
Mass of each oxygen atom $=\frac{m}{2}$
Hence, moment of inertia $I$, is calculated as:
$\left(\frac{m}{2}\right) r^{2}+\left(\frac{m}{2}\right) r^{2}=m r^{2}$
$r=\sqrt{\frac{I}{m}}$
$\sqrt{\frac{1.94 \times 10^{-46}}{5.36 \times 10^{-26}}}=0.60 \times 10^{-10} m$
It is given that:
$KE _{ rot }=\frac{2}{3} KE _{ trms }$
$\frac{1}{2} I \omega^{2}=\frac{2}{3} \times \frac{1}{2} \times m v^{2}$
$m r^{2} \omega^{2}=\frac{2}{3} m v^{2}$
$\omega=\sqrt{\frac{2}{3}} \frac{v}{r}$
$=\sqrt{\frac{2}{3}} \times \frac{500}{0.6 \times 10^{-10}}$
$=6.80 \times 10^{12} rad / s$
Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.