Two simple pendulums whose lengths are $100 cm$ and $121 cm$ are suspended side by side. Their bobs are pulled together and then released. After how many minimum oscillations of the longer pendulum, will the two be in phase again
$11$
$10$
$21$
$20$
The period of a simple pendulum measured inside a stationary lift is found to be $T$. If the lift starts accelerating upwards with acceleration of $g/3,$ then the time period of the pendulum is
Write the displacement variable in simple pendulum and the propagation of light.
Answer the following questions:
$(a)$ Time period of a particle in $SHM$ depends on the force constant $k$ and mass $m$ of the particle:
$T=2 \pi \sqrt{\frac{m}{k}}$. A stmple pendulum executes $SHM$ approximately. Why then is the time pertodof.anondwers period of a pendulum independent of the mass of the pendulum?
$(b)$ The motion of a simple pendulum is approximately stmple harmonte for small angle oscillations. For larger angles of oscillation, a more involved analysis shows that $T$ is greater than $2 \pi \sqrt{\frac{l}{g}} .$ Think of a qualitative argument to appreciate this result.
$(c)$ A man with a wristwatch on his hand falls from the top of a tower. Does the watch give correct time during the free fall?
$(d)$ What is the frequency of oscillation of a simple pendulum mounted in a cabin that is freely failing under gravity?
lfa simple pendulum has significant amplitude (up to a factor of $1/e$ of original) only in the period between $t = 0\ s$ to $t = \tau \ s$, then $\tau$ may be called the average life of the pendulum. When the spherical bob of the pendulum suffers a retardation ( due to viscous drag) proportional to its velocity with $b$ as the constant of proportionality, the average life time of the pendulum is (assuming damping is small) in seconds
A second's pendulum is mounted in a rocket. Its period of oscillation decreases when the rocket