સ્પ્રિંગ અચળાંકો $k _{1}$ અને $k _{2}$ ધરાવતી બે સ્પ્રિંગો એક દળ $m$ સાથે જોડી છે. આ દળનાં દોલનોની આવૃતિ $f$ છે. જો $k _{1}$ અને $k _{2}$ નાં મૂલ્યો ચાર ગણા કરવામાં આવે, તો દોલનોની આવૃત્તિ કેટલી થશે?
$2f$
$f /2$
$f /4$
$4f$
બાજુની આકૃતિમાં દર્શાવ્યા મુજબ, જો કોઈ લીસા ઢાળ પર સરખી સ્પ્રિંગોથી કોઈ દળ ગોઠવેલું હોય તો આ દોલન કરતા તંત્રનો આવર્તકાળ કેટલો થશે ?
$2\,kg$ દળ ધરાવતા બ્લોકને $20\,N / m$ સ્પ્રિંગ અચળાંક ધરાવતી બે સમાન સ્પ્રિંગ સાથે જોડવામાં આવે છે. બ્લોકને ધર્ષણ રહિત સપાટી પર મૂકવામાં આવે છે અને સ્પ્રિંગના છેડાને જડ આધાર સાથે લગાડવામાં આવે છે. (આકૃતિમાં જુઓ).જ્યારે દળને સંતુલન સ્થિતિમાંથી સ્થાનાંતરિત કરવામાં આવે ત્યારે તે સરળ આવર્ત ગતિ કરે છે. દોલનોનો આવર્ત કાળ $\frac{\pi}{\sqrt{x}}$ છે. તો $x$ નું મૂલ્ય $...........$ છે.
$k$ બળ અચળાંક ધરાવતી સ્પ્રિંગના બે ટુકડા કરવામાં આવે છે,મોટા ટુકડાની લંબાઇ નાના ટુકડાની લંબાઇ કરતાં બમણી છે,તો મોટા ટુકડાનો બળ અચળાંક કેટલો થાય?
એક સરખા સ્પ્રિંગ અચળાંક $k$ ધરાવતી ત્રણ સ્પ્રિંગ સાથે $m$ જેટલું દળ આકૃતિ મુજબ લટકાવેલ છે. જો દળને થોડુંક નીચે તરફ ખેંચીને છોડી દેવામાં આવે તો થતા દોલનોનો આવર્તકાળ કેટલો હશે ?
આકૃતિમાં દર્શાવ્યા પ્રમાણે $m = 1.0\,kg$ નો પદાર્થ જમીન સાથે જડિત સ્પ્રિંગની ઉપર રહેલ પ્લેટફોર્મ પર મૂકવામાં આવે છે.સ્પ્રિંગ અને પ્લેટફોર્મનું દળ નહિવત છે. જો સ્પ્રિંગને થોડીક દબાવીને મુક્ત કરવામાં આવે તો તે સરળ આવર્ત ગતિ કરે છે. સ્પ્રિંગનો બળ અચળાંક $500\,N/m$ છે. આ ગતિ માટે કંપવિસ્તાર $A$ કેટલો હોવો જોઈએ કે જેથી $m$ દળ પ્લેટફોર્મથી છૂટો પડે?
($g = 10\,m/s^2$ અને ગતિ દરમિયાન સ્પ્રિંગ વિકૃત થતી નથી)