$L$ લંબાઈ, $M$ દળ અને $A$ આડછેદ ધરાવતા નળાકારને દળરહિત સ્પ્રિંગ સાથે બાંધીને એવી રીતે લટકવવામાં આવે છે કે જેથી સમતોલન સમયે અડધું નળાકાર $\sigma$ ઘનતાવાળા પ્રવાહીમાં ડૂબેલું રહે.જ્યારે નળાકારને નીચે તરફ થોડું ખેંચીને મુક્ત કરવામાં આવે ત્યારે તે નાના કંપવિસ્તારથી દોલનો કરે છે.નળાકારના દોલનો માટેનો આવર્તકાળ $T$ કેટલો મળે?
$k$, $2k$, $4k$ અને $8k$....ધરાવતી સ્પ્રિંગને શ્રેણીમાં જોડતાં સમતુલ્ય બળ અચળાંક કેટલો થાય?
આકૃતિમાં દર્શાવ્યા પ્રમાણે $m$ દ્રવ્યમાનને બે દોરી વચ્ચે લગાવેલ છે. બે સ્પ્રિંગોના સ્પ્રિંગ અચળાંક $K_1$ અને $K _2$ છે. ઘર્ષણ મુકત સપાટી પર $m$ દળના દોલનનો આવર્તકાળ છે.
$k_1$ અને $k_2$ બળઅચળાંક ઘરાવતી સ્પ્રિંગ પર અલગ અલગ $m$ દળ લટકાવતા સરળ આવર્તગતિનો આવર્તકાળ $ {t_1} $ અને $ {t_2} $ છે.બંને સ્પ્રિંગને શ્રેણીમાં જોડીને $m$ દળ કટકાવતા સરળ આવર્તગતિનો આવર્તકાળ $T$ છે,તો
આકૃતિમાં દર્શાવ્યા પ્રમાણે $m = 1.0\,kg$ નો પદાર્થ જમીન સાથે જડિત સ્પ્રિંગની ઉપર રહેલ પ્લેટફોર્મ પર મૂકવામાં આવે છે.સ્પ્રિંગ અને પ્લેટફોર્મનું દળ નહિવત છે. જો સ્પ્રિંગને થોડીક દબાવીને મુક્ત કરવામાં આવે તો તે સરળ આવર્ત ગતિ કરે છે. સ્પ્રિંગનો બળ અચળાંક $500\,N/m$ છે. આ ગતિ માટે કંપવિસ્તાર $A$ કેટલો હોવો જોઈએ કે જેથી $m$ દળ પ્લેટફોર્મથી છૂટો પડે?
($g = 10\,m/s^2$ અને ગતિ દરમિયાન સ્પ્રિંગ વિકૃત થતી નથી)