Two springs have their force constant as $k_1$ and $k_2 (k_1 > k_2)$. when they are  stretched by the same force

  • A

    No work is done in case of both the springs

  • B

    Equal work is done in case of both the springs

  • C

    More work is done in case of second spring

  • D

    More work is done in case of first spring

Similar Questions

A body of mass $1\,kg$ falls freely from a height of $100\,m,$ on a platform of mass $3\,kg$ which is mounted on a spring having spring constant $k = 1.25 \times 10^6\, N/m.$ The body sticks to the platform and the spring’s maximum compression is found to be $x.$ Given that $g = 10\,ms^{-2},$ the value of $x$ will be close to ................ $\mathrm{cm}$

  • [JEE MAIN 2019]

A block $(B)$ is attached to two unstretched springs $\mathrm{S} 1$ and $\mathrm{S} 2$ with spring constants $\mathrm{k}$ and $4 \mathrm{k}$, respectively (see figure $\mathrm{I}$ ). The other ends are attached to identical supports $M1$ and $M2$ not attached to the walls. The springs and supports have negligible mass. There is no friction anywhere. The block $\mathrm{B}$ is displaced towards wall $1$ by a small distance $\mathrm{x}$ (figure $II$) and released. The block returns and moves a maximum distance $\mathrm{y}$ towards wall $2$ . Displacements $\mathrm{x}$ and $\mathrm{y}$ are measured with respect to the equilibrium position of the block $B$. The ratio $\frac{y}{x}$ is Figure: $Image$

  • [IIT 2008]

To simulate car accidents, auto manufacturers study the collisions of moving cars with mounted springs of different spring constants. Consider a typical simulation with a car of mass $1000\; kg$ moving with a speed $18.0\; km / h$ on a rough road having $\mu$ to be $0.5$ and colliding with a horizontally mounted spring of spring constant $6.25 \times 10^{3} \;N m ^{-1} .$ What is the maximum compression of the spring in $m$?

A block of mass $'m'$ is released from rest at point $A$. The compression in spring, when the speed of block is maximum

A $0.5 \,kg$ block moving at a speed of $12 \,ms ^{-1}$ compresses a spring through a distance $30\, cm$ when its speed is halved. The spring constant of the spring will be $Nm ^{-1}$.

  • [JEE MAIN 2022]