Two springs of spring constants $1500\, N/m$ and $3000\, N/m$ respectively are stretched with the same force. They will have potential energy in the ratio

  • A

    $4:1$

  • B

    $1:4$

  • C

    $2:1$

  • D

    $1:2$

Similar Questions

A block of mass $m$ is pushed against a spring whose spring constant is $k$ fixed at one end with a wall. The block can slide on a frictionless table as shown in figure. If the natural length of spring is $L_0$ and it is compressed to half its length when the block is released, find the velocity of the block, when the spring has natural length

A massless platform is kept on a light elastic spring as shown in fig. When a sand particle of mass $0.1\; kg$ is dropped on the pan from a height of $0.24 \;m$, the particle strikes the pan and spring is compressed by $0.01\; m$.

From what height should the particle be dropped to cause a compression of $0.04\; m$.

Explain the elastic potential energy of spring and obtain an expression for this energy.

$A$ ball of mass $m$ is attached to the lower end of light vertical spring of force constant $k$. The upper end of the spring is fixed. The ball is released from rest with the spring at its normal (unstretched) length, comes to rest again after descending through a distance $x.$

slowing down of neutrons: In a nuclear reactor a neutron of high speed (typically $10^{7}\; m s ^{-1}$ ) must be slowed to $10^{3}\; m s ^{-1}$ so that it can have a high probability of interacting with isotope $^{235} _{92} U$ and causing it to fission. Show that a neutron can lose most of its kinetic energy In an elastic collision with a light nuclel like deuterlum or carbon which has a mass of only a few times the neutron mass. The material making up the light nuclel, usually heavy water $\left( D _{2} O \right)$ or graphite, is called a moderator.