Two springs with spring constants ${K_1} = 1500\,N/m$ and ${K_2} = 3000\,N/m$ are stretched by the same force. The ratio of potential energy stored in spring will be
$2:1$
$1:2$
$4:1$
$1:4$
A spring has spring constant $k$ and $l$. If it cut into piece spring in the proportional to $\alpha : \beta : \gamma $ then obtain the spring constant of every piece in term of spring constant of original spring (Here, $\alpha $, $\beta $ and $\gamma $ are integers)
A mass $m$ is suspended from a spring of force constant $k$ and just touches another identical spring fixed to the floor as shown in the figure. The time period of small oscillations is
A spring has a certain mass suspended from it and its period for vertical oscillation is $T$. The spring is now cut into two equal halves and the same mass is suspended from one of the halves. The period of vertical oscillation is now
The time period of a mass suspended from a spring is $T$. If the spring is cut into four equal parts and the same mass is suspended from one of the parts, then the new time period will be
A uniform stick of mass $M$ and length $L$ is pivoted at its centre. Its ends are tied to two springs each of force constant $K$ . In the position shown in figure, the strings are in their natural length. When the stick is displaced through a small angle $\theta $ and released. The stick