10-1.Thermometry, Thermal Expansion and Calorimetry
medium

Two straight metallic strips each of thickness $t$ and length $\ell$ are rivetted together. Their coefficients of linear expansions are $\alpha_1$ and $\alpha_2$. If they are heated through temperature $\Delta T$, the bimetallic strip will bend to form an arc of radius

A

$\left.t /\left\{\alpha_1+\alpha_2\right) \Delta T \right\}$

B

$t /\left\{\left(\alpha_2-\alpha_1\right) \Delta T\right\}$

C

$t\left(\alpha_1-\alpha_2\right) \Delta T$

D

$t\left(\alpha_2-\alpha_1\right) \Delta T$

Solution

(b)

Let the angle subtended by the arc formed be $\theta$. Then

$\theta=\frac{\ell}{ r }$ or $\theta=\frac{\Delta \ell}{\Delta r }=\frac{\ell_2-\ell_1}{ r _1- r _2}$

$\therefore \quad \theta=\frac{\ell\left(\alpha_2-\alpha_1\right) \Delta T }{ t }$

or $\frac{\ell}{ r }=\frac{\ell\left(\alpha_2-\alpha_1\right) \Delta T }{ t }$

So, $r=\frac{t}{\left(\alpha_2-\alpha_1\right) \Delta T}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.