Two vectors $\vec A$ and $\vec B$ have magnitudes $2$ and $1$ respectively. If the angle between $\vec A$ and $\vec B$ is $60^o$, then which of the following vectors may be equal to $\frac{{\vec A}}{2} - \vec B$

828-721

  • A
    828-a721
  • B
    828-b721
  • C
    828-c721
  • D
    828-d721

Similar Questions

The vector $\overrightarrow{O A}$ where $O$ is origin is given by $\overrightarrow{O A}=2 \hat{i}+2 \hat{j}$. Now it is rotated by $45^{\circ}$ anticlockwise about $O$. What will be the new vector?

The maximum and minimum magnitude of the resultant of two given vectors are $17 $ units and $7$ unit respectively. If these two vectors are at right angles to each other, the magnitude of their resultant is

If a particle moves from point $P (2,3,5)$ to point $Q (3,4,5)$. Its displacement vector be

${d \over {dx}}({x^2}{e^x}\sin x) = $

The magnitude of vector $\overrightarrow A ,\,\overrightarrow B $ and $\overrightarrow C $ are respectively $12, 5$ and $13$ units and $\overrightarrow A + \overrightarrow B = \overrightarrow C $ then the angle between $\overrightarrow A $ and $\overrightarrow B $ is