The vectors $\overrightarrow A $ and $\overrightarrow B$ lie in a plane. Another vector $\overrightarrow C $ lies outside this plane. The resultant $\overrightarrow A + \overrightarrow B + \overrightarrow C$ of these three vectors
can be zero
cannot be zero
lies in the plane of $\overrightarrow A$ and $\overrightarrow B$
lies in the plane of $\overrightarrow A$ and $ \overrightarrow A + \overrightarrow B$
Let $\overrightarrow C = \overrightarrow A + \overrightarrow B$
$(A)$ It is possible to have $| \overrightarrow C | < | \overrightarrow A |$ and $ | \overrightarrow C | < | \overrightarrow B|$
$(B)$ $|\overrightarrow C |$ is always greater than $|\overrightarrow A |$
$(C)$ $|\overrightarrow C |$ may be equal to $|\overrightarrow A | + |\overrightarrow B|$
$(D)$ $|\overrightarrow C |$ is never equal to $|\overrightarrow A | + |\overrightarrow B|$
Which of the above is correct
In the cube of side $a$ shown in the figure, the vector from the central point of the face $ABOD$ to the central point of the face $BEFO$ will be
Two forces of $10 \,N$ and $6 \,N$ act upon a body. The direction of the forces are unknown. The resultant force on the body may be .........$N$
Three vectors $\overrightarrow{\mathrm{OP}}, \overrightarrow{\mathrm{OQ}}$ and $\overrightarrow{\mathrm{OR}}$ each of magnitude $A$ are acting as shown in figure. The resultant of the three vectors is $A \sqrt{x}$. The value of $x$ is. . . . . . . . .
If the resultant of $n$ forces of different magnitudes acting at a point is zero, then the minimum value of $n$ is