The vectors $\overrightarrow A $ and $\overrightarrow B$ lie in a plane. Another vector $\overrightarrow C $ lies outside this plane. The resultant $\overrightarrow A + \overrightarrow B + \overrightarrow C$ of these three vectors
can be zero
cannot be zero
lies in the plane of $\overrightarrow A$ and $\overrightarrow B$
lies in the plane of $\overrightarrow A$ and $ \overrightarrow A + \overrightarrow B$
The resultant force of $5 \,N$ and $10 \,N$ can not be ........ $N$
Two forces $P$ and $Q$, of magnitude $2F$ and $3F$, respectively, are at an angle $\theta $ with each other. If the force $Q$ is doubled, then their resultant also gets doubled. Then, the angle $\theta $ is ....... $^o$
In an octagon $ABCDEFGH$ of equal side, what is the sum of $\overrightarrow{ AB }+\overrightarrow{ AC }+\overrightarrow{ AD }+\overrightarrow{ AE }+\overrightarrow{ AF }+\overrightarrow{ AG }+\overrightarrow{ AH }$ if, $\overrightarrow{ AO }=2 \hat{ i }+3 \hat{ j }-4 \hat{ k }$
The sum of three forces ${\vec F_1} = 100\,N,{\vec F_2} = 80\,N$ and ${\vec F_3} = 60\,N$ acting on a particle is zero. The angle between $\vec F_1$ and $\vec F_2$ is nearly .......... $^o$