3-1.Vectors
medium

If two vectors $\vec{A}$ and $\vec{B}$ having equal magnitude $\mathrm{R}$ are inclined at an angle $\theta$, then

A

$|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=\sqrt{2} \mathrm{R} \sin \left(\frac{\theta}{2}\right)$

B

$|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=2 \mathrm{R} \sin \left(\frac{\theta}{2}\right)$

C

$|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=2 \mathrm{R} \cos \left(\frac{\theta}{2}\right)$

D

$|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=2 R \cos \left(\frac{\theta}{2}\right)$

(JEE MAIN-2024)

Solution

The   magnitude   of   resultant   vector

$R^{\prime}=\sqrt{a^2+b^2+2 a b \cos \theta}$

Here $a=b=R$

Then $R^{\prime}=\sqrt{R^2+R^2+2 R^2 \cos \theta}$

$=R \sqrt{2} \sqrt{1+\cos \theta}$

$=\sqrt{2} R \sqrt{2 \cos ^2 \frac{\theta}{2}}$

$=2 R \cos \frac{\theta}{2}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.