If $a$ and $b$ are two units vectors inclined at an angle of $60^{\circ}$ to each other, then

  • A
    $| a + b | > 1$
  • B
    $|a+b| < 1$
  • C
    $| a - b | > 1$
  • D
    $|a-b| < 1$

Similar Questions

Given that $\vec A\, + \,\vec B\, = \,\vec C\,.$  If  $\left| {\vec A} \right|\, = \,4,\,\,\left| {\vec B} \right|\, = \,5\,\,$ and $\left| {\vec C} \right|\, =\,\sqrt {61}$ the angle between $\vec A\,\,$ and $\vec B$ is ....... $^o$

For the figure

A body moves due East with velocity $20\, km/hour$ and then due North with velocity $15 \,km/hour$. The resultant velocity..........$km/hour$

If $| A |=2$ and $| B |=4$ and angle between them is $60^{\circ}$, then $| A - B |$ is

$\overrightarrow A = 2\hat i + \hat j,\,B = 3\hat j - \hat k$ and $\overrightarrow C = 6\hat i - 2\hat k$.Value of $\overrightarrow A - 2\overrightarrow B + 3\overrightarrow C $ would be