$\mathop A\limits^ \to $तथा $\mathop B\limits^ \to $ दो सदिश एक तल में स्थित हैं तथा एक अन्य सदिश $\mathop C\limits^ \to $ इस तल के बाहर है, तो इन तीन सदिशों का परिणामी अर्थात $\mathop A\limits^ \to + \mathop B\limits^ \to + \mathop C\limits^ \to $

  • A
    शून्य हो सकता है
  • B
    शून्य नहीं हो सकता
  • C
    $\mathop A\limits^ \to + \mathop B\limits^ \to $ के तल में होगा
  • D
    $\mathop C\limits^ \to $ के तल में होगा

Similar Questions

दो सदिशों $\mathop P\limits^ \to $ तथा $\mathop Q\limits^ \to $ का परिणामी $\mathop R\limits^ \to $ है। यदि $Q$ को दुगना कर दिया जाए तो नया सदिश $P$ के लम्बवत हो जाता है। $R$ निम्न के बराबर होगा

दिया है $\mathop A\limits^ \to + \mathop B\limits^ \to + \mathop C\limits^ \to $ $= 0$, तीन में से दो सदिश परिमाण में समान हैं तथा तीसरे सदिश का परिमाण पहले दो समान परिमाण वाले सदिशों में से किसी एक का $\sqrt 2 $ गुना है तो सदिशों के मध्य कोण है

कार्तीय  निर्देशांक पद्धति में तीन सदिश निम्न प्रकार प्रदर्शित हैं
$\mathop a\limits^ \to = 4\hat i - \hat j$, $\mathop b\limits^ \to = - 3\hat i + 2\hat j$ तथा $\mathop c\limits^ \to = - \hat k$
जहाँ $\hat i,\,\hat j,\,\hat k$ क्रमश: $X, Y$ और $Z-$ अक्ष के सापेक्ष इकाई सदिश है। इन सदिशों के संयोग के अनुदिश इकाई सदिश $\hat r$ है

तीन सदिश $\mathop A\limits^ \to = 3\hat i - 2\hat j + \hat k,\,\mathop B\limits^ \to = \hat i - 3\hat j + 5\hat k$ तथा $\mathop C\limits^ \to = 2\hat i + \hat j - 4\hat k$ बनाते हैं

चित्र में दिखाए गए दो सदिशों $A$ तथा $B$ के बीच का कोण $\theta$ है । इनके परिणामी सदिश का परिमाण तथा दिशा उनके परिमाणों तथा $\theta$ के पद् में निकालिए |