दो सदिश $(x + y)$ तथा $(x -y)$ किस कोण पर कार्य करें ताकि इनका परिणामी $\sqrt {({x^2} + {y^2})} $ हो सके
${\cos ^{ - 1}}\left( { - \frac{{{x^2} + {y^2}}}{{2({x^2} - {y^2})}}} \right)$
${\cos ^{ - 1}}\left( { - \frac{{2({x^2} - {y^2})}}{{{x^2} + {y^2}}}} \right)$
${\cos ^{ - 1}}\left( { - \frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}}} \right)$
${\cos ^{ - 1}}\left( { - \frac{{{x^2} - {y^2}}}{{{x^2} + {y^2}}}} \right)$
किसी सदिश के प्रारंभिक तथा अंतिम बिन्दुओं के निर्देशांक $(4, -4, 0) $ तथा $(-2, -2, 0)$ हैं। इसका परिमाण होगा
यदि $\mathop A\limits^ \to = 4\hat i - 3\hat j$ तथा $\mathop B\limits^ \to = 6\hat i + 8\hat j$ तो $\mathop A\limits^ \to \, + \mathop B\limits^ \to $ का परिमाण तथा दिशा होगी
तीन बलों के प्रभाव में एक वस्तु विराम अवस्था में है। जिनमें से दो बल $\mathop {{F_1}}\limits^ \to = 4\hat i,\,\mathop {{F_2}}\limits^ \to = 6\hat j$ हैं, तो तीसरा बल होगा
$\mathop A\limits^ \to = 4\hat i - 3\hat j$ तथा $\mathop B\limits^ \to = 8\hat i + 8\hat j$ के परिणामी के समांतर इकाई सदिश होगा