दो सदिश $(x + y)$ तथा $(x -y)$ किस कोण पर कार्य करें ताकि इनका परिणामी $\sqrt {({x^2} + {y^2})} $ हो सके
${\cos ^{ - 1}}\left( { - \frac{{{x^2} + {y^2}}}{{2({x^2} - {y^2})}}} \right)$
${\cos ^{ - 1}}\left( { - \frac{{2({x^2} - {y^2})}}{{{x^2} + {y^2}}}} \right)$
${\cos ^{ - 1}}\left( { - \frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}}} \right)$
${\cos ^{ - 1}}\left( { - \frac{{{x^2} - {y^2}}}{{{x^2} + {y^2}}}} \right)$
दिये गये दो सदिशों के परिणामी के अधिकतम तथा न्यूनतम परिमाण क्रमश: $17$ तथा $7$ इकाई हैं। यदि ये दोनों सदिश परस्पर लम्बवत् हैं। तब इनके परिणामी का परिमाण होगा
$\vec{A}$ और $\vec{B}$ दो सदिश राशियाँ हैं, जहाँ $\vec{A}=a \hat{\imath}$ और $\vec{B}=a(\cos \omega t \hat{\imath}+\sin \omega t \hat{\jmath})$ हैं। यहाँ $a$ एक स्थिरांक (constant) है और $\omega=\pi / 6 rad s ^{-1}$ है। यदि $|\vec{A}+\vec{B}|=\sqrt{3}|\vec{A}-\vec{B}|$ प्रथम बार समय $t=\tau$ पर होता है, तो $\tau$ का मान, सेकेंडों (seconds) में, .......... है।
सदिश $(\overrightarrow{ A })$ तथा $(\overrightarrow{ A }-\overrightarrow{ B })$ के बीच कोण है।
तीन बलों के निम्न समुच्चय किसी वस्तु पर कार्य करते हैं, किस समुच्चय का परिणामी शून्य नहीं हो सकता
$3\,N$ तथा $2 \,N$ परिमाण के दो बल कोण पर इस प्रकार कार्यरत है, कि उनका परिणामी $R$ है। यदि प्रथम बल को $6\,N$ तक बढ़ा दिया जाये, तो परिणामी बल $2R$ हो जाता है। का मान....... $^o$ है