जब सदिश $\overrightarrow{\mathrm{B}}$ से सदिश $\overrightarrow{\mathrm{A}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$ को घटाने पर यह $2 \hat{\mathrm{j}}$ के बराबर एक सदिश देता है। तब सदिश $\overrightarrow{\mathrm{B}}$ का परिमाण होगा:
$\sqrt{13}$
$\sqrt{33}$
$\sqrt{6}$
$\sqrt{5}$
यदि $\mathop A\limits^ \to = 4\hat i - 3\hat j$ तथा $\mathop B\limits^ \to = 6\hat i + 8\hat j$ तो $\mathop A\limits^ \to \, + \mathop B\limits^ \to $ का परिमाण तथा दिशा होगी
दिये गये बलों के युग्म मे से किस युग्म का परिणामी $2\, N$ नहीं हो सकता
$\vec{A}$ और $\vec{B}$ दो सदिश राशियाँ हैं, जहाँ $\vec{A}=a \hat{\imath}$ और $\vec{B}=a(\cos \omega t \hat{\imath}+\sin \omega t \hat{\jmath})$ हैं। यहाँ $a$ एक स्थिरांक (constant) है और $\omega=\pi / 6 rad s ^{-1}$ है। यदि $|\vec{A}+\vec{B}|=\sqrt{3}|\vec{A}-\vec{B}|$ प्रथम बार समय $t=\tau$ पर होता है, तो $\tau$ का मान, सेकेंडों (seconds) में, .......... है।
यदि एक कण बिन्दु $P (2,3,5)$ से बिन्दु $Q (3,4,5) $ तक गति करता है, तो इसका विस्थापन सदिश होगा
$F$ परिमाण के दो बलों के परिणामी का परिमाण $F$ है। दोनों बलों के बीच कोण ........ $^o$ है