A heavy rope is suspended from a rigid support. A transverse wave pulse is set up at the lower end, then
the pulse will travel with uniform speed
the pulse will travel with increasing speed
the pulse will travel with decreasing speed
the pulse cannot travel through the rope
A string with a mass density of $4\times10^{-3}\, kg/m$ is under tension of $360\, N$ and is fixed at both ends. One of its resonance frequencies is $375\, Hz$. The next higher resonance frequency is $450\, Hz$. The mass of the string is
The displacement of an elastic wave is given by the function : $y = 3\, sin\,\omega t + 4\, cos\,\omega t$ where $y$ is in $cm$ and $t$ is in $s$. The resultant amplitude is ...... $cm$
A metallic wire of length $L$ is fixed between two rigid supports. If the wire is cooled through a temperature difference $\Delta T (Y =$ young’s modulus, $\rho =$ density, $\alpha =$ coefficient of linear expansion) then the frequency of transverse vibration is proportional to :
Two tuning forks $A$ and $B$ produce $8\, beats/s$ when sounded together. $A$ gas column $37.5\, cm$ long in a pipe closed at one end resonate to its fundamental mode with fork $A$ whereas a column of length $38.5 \, cm$ of the same gas in a similar pipe is required for resonance with fork $B$. The frequencies of these two tuning forks, are
The diagram shows snapshot of a wave at time $t = 0$. The particle at $x = x_1$ is moving upward at that instant. Direction of propagation of wave is