Two wooden blocks are moving on a smooth horizontal surface such that the mass $m$ remains stationary with respect to block of mass $M$ as shown in the figure. The magnitude of force $P$ is

826-903

  • A

    $(M + m)g\, tan\,\beta $

  • B

    $g\,tan\, \beta $

  • C

    $mg\,cos \,\beta $

  • D

    $(M + m)g \,coses\,\beta $

Similar Questions

In the diagram shown, the normal reaction force between $2\,kg$ and $1\,kg$ is (Consider the surface, to be smooth)$.........N$ (Given $g =10\,ms ^{-2}$)

  • [NEET 2022]

A wooden wedge of mass $M$ and inclination angle $(\alpha)$ rest on a smooth floor. A block of mass $m$ is kept on wedge. A force $F$ is applied on the wedge as shown in the figure such that block remains stationary with respect to wedge. So, magnitude of force $F$ is

  • [AIIMS 2018]

In the figure shown $'P'$ is a plate on which a wedge $B$ is placed and on $B$ a block $A$ of mass $m$ is placed. The plate is suddenly removed and system of $B$ and $A$ is allowed to fall under gravity. Neglecting any force due to air on $A$ and $B$, the normal force on $A$ due to $B$ is

Two bodies $A$ and $B$ of masses $10\,\, kg$ and $15\, kg$ respectively kept on a smooth, horizontal surface are tied to the ends of a light string. If $T$ represents the tension in the string when a horizontal force $F = 500\, N$ is applied to $A$ (as shown in figure $1$) and $T'$ be the tension when it is applied to $B$ (figure $2$), then which of the following is true

Two bodies of masses $m_{1}=5\,kg$ and $m _{2}=3\,kg$ are connected by a light string going over a smooth light pulley on a smooth inclined plane as shown in the figure. The system is at rest. The force exerted by the inclined plane on the body of mass $m _{1}$ will be$....N$ [Take $g=10\,ms ^{-2}$ ]

  • [JEE MAIN 2022]