Unit vector perpendicular to vector $A =-3 \hat{ i }-2 \hat{ j }-3 \hat{ k }$ and $B =2 \hat{ i }+4 \hat{ j }+6 \hat{ k }$ both is

  • A
    $\frac{3 \hat{ j }-2 \hat{ k }}{\sqrt{13}}$
  • B
    $\frac{3 \hat{ k }-2 \hat{ j }}{\sqrt{13}}$
  • C
    $\frac{-\hat{ j }+2 \hat{ k }}{\sqrt{13}}$
  • D
    $\frac{\hat{ i }+3 \hat{ j }-\hat{ k }}{\sqrt{13}}$

Similar Questions

If $\overrightarrow A  \times \overrightarrow B = \overrightarrow C + \overrightarrow D,$ then select the correct alternative-

Obtain scalar product in terms of Cartesian component of vectors.

The vectors from origin to the points $A$ and $B$ are $\overrightarrow A = 3\hat i - 6\hat j + 2\hat k$ and $\overrightarrow B = 2\hat i + \hat j - 2\hat k$ respectively. The area of the triangle $OAB$ be

Let $\vec{A}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{B}=4 \hat{i}+j+2 \hat{k}$ then $|\vec{A} \times \vec{B}|$ is equal to ...................

Three vectors $\overrightarrow a ,\,\overrightarrow b $and $\overrightarrow c $ satisfy the relation $\overrightarrow a \,.\,\overrightarrow b = 0$ and $\overrightarrow a \,.\,\overrightarrow c = 0.$ The vector $\overrightarrow a $ is parallel to

  • [AIIMS 1996]