Using molecular orbital theory, compare the bond energy and magnetic character of ${\rm{O}}_2^ + $ and ${\rm{O}}_2^{2 - }$ species.
According to molecular orbital theory electronic configurations of $\mathrm{O}_{2}^{+}$and $\mathrm{O}_{2}^{-}$species are as follows : $\mathrm{O}_{2}^{+}:(\sigma 1 s)^{2}\left(\sigma^{*} 1 s\right)^{2}(\sigma 2 s)^{2}\left(\sigma^{*} 2 s\right)^{2}\left(\sigma 2 p_{z}\right)^{2}\left(\pi 2 p_{x}^{2}, \pi 2 p_{y}^{2}\right)\left(\pi^{*} 2 p_{x}^{2}\right)$
Bond order of $\mathrm{O}_{2}^{+}=\frac{10-5}{2}=\frac{5}{2}=2.5$
$\mathrm{O}_{2}^{-}:(\sigma 1 s)^{2}\left(\sigma^{*} 1 s\right)^{2}(\sigma 2 s)^{2}\left(\sigma^{*} 2 s^{2}\right)\left(\sigma 2 p_{z}\right)^{2}\left(\pi 2 p_{x}^{2}, \pi 2 p_{y}^{2}\right)$
$\left(\pi^{*} 2 p_{x}^{2},\left(\pi^{*} 2 p_{y}^{1}\right)\right.$
Bond order of $\mathrm{O}_{2}^{-}=\frac{10-7}{2}=\frac{3}{2}=1.5$
As Higher bond order of $\mathrm{O}_{2}^{+}$shows that it is more stable than $\mathrm{O}_{2}^{-}$. Both the species have unpaired electrons. So, both are paramagnetic in nature.
Give electron configuration, bond order magnetic property and energy diagram for Lithium $\left( {{\rm{L}}{{\rm{i}}_2}} \right)$ molecule.
Out of the following which has smallest bond length
The bond order and magnetic behaviour of $\mathrm{O}_{2}^{-}$ion are, respectively:
The bond order in $NO$ is $2.5$ while that in $N{O^ + }$ is $3.$ Which of the following statements is true for these two species
In the process, $O_2^ + \to O_2^{ + 2} + e^-$ the electron lost is from