નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી અને વિસ્તરણ કર્યા સિવાય સાબિત કરો : $\left|\begin{array}{lll}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y\end{array}\right|=2\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$
$\Delta=\left|\begin{array}{lll}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & z+y\end{array}\right|$
$=\left|\begin{array}{ccc}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a & p & x\end{array}\right|+\left|\begin{array}{ccc}b+c & q+r & y+z \\ c+a & r+p & z+x \\ b & q & y\end{array}\right|$
$=\Delta_{1}+\Delta_{2}(\text { say }).......(1)$
Now, $\Delta_{1}=\left|\begin{array}{ccc}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a & p & x\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}-R_{2},$ we have:
$\Delta_{1}=\left|\begin{array}{lll}b & q & y \\ c & r & z \\ a & p & x\end{array}\right|$
Applying $R_{1} \leftrightarrow R_{3}$ and $R_{2} \leftrightarrow R_{3},$ we have:
$\Delta_{1}=(-1)^{2}\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|=\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|......(2)$
$\Delta_{2}=\left|\begin{array}{ccc}b+c & q+r & y+z \\ c+a & r+p & z+x \\ b & q & y\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}-R_{3},$ we have:
$\Delta_{2}=\left|\begin{array}{ccc}c & r & z \\ c+a & r+p & z+x \\ b & q & y\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1},$ we have:
$\Delta_{2}=\left|\begin{array}{lll}c & r & z \\ a & p & x \\ b & q & y\end{array}\right|$
Applying $R_{1} \leftrightarrow R_{2}$ and $R_{2} \leftrightarrow R_{3},$ we have:
$\Delta_{2}=(-1)^{2}\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|=\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$
From $(1),(2),$ and $(3),$ we have:
$\Delta=2\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$
Hence, the given result is proved.
જો $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha + b}\\b&c&{b\alpha + c}\\{a\alpha + b}&{b\alpha + c}&0\end{array}\,} \right| = 0$ તો $a,b,c$ એ . . . .શ્રેણીમાં છે .
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી અને વિસ્તરણ કર્યા સિવાય સાબિત કરો : $\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|=0$
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી સાબિત કરો કે, $\left| {\begin{array}{*{20}{l}}
{\sin \alpha }&{\cos \alpha }&{\cos (\alpha + \delta )} \\
{\sin \beta }&{\cos \beta }&{\cos (\beta + \delta )} \\
{\sin \gamma }&{\cos \gamma }&{\cos (\gamma + \delta )}
\end{array}} \right| = 0$
જો $a+x=b+y=c+z+1,$ જ્યાં $a, b, c, x, y, z$ એ શૂન્યેતર ભિન્ન વાસ્તવિક સંખ્યાઓ હોય તો $\left|\begin{array}{lll}x & a+y & x+a \\ y & b+y & y+b \\ z & c+y & z+c\end{array}\right|$ ની કિમત શોધો