$\left| {\begin{array}{*{20}{c}}
0&{x - y}&{x - z} \\
{y - x}&0&{y - z} \\
{z - x}&{z - y}&0
\end{array}} \right|$ મેળવો.
$x + y + z$
$-(x + y + z)$
$0$
$2(x + y + z)$
જો $\mathrm{a}_{\mathrm{r}}=\cos \frac{2 \mathrm{r} \pi}{9}+i \sin \frac{2 \mathrm{r} \pi}{9}, \mathrm{r}=1,2,3, \ldots, i=\sqrt{-1}$ હોય તો $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$ ની કિમંત મેળવો.
રેખીય સમીકરણની સિસ્ટમ $x + y + z = 2, 2x + 3y + 2z = 5$, $2x + 3y + (a^2 -1)\,z = a + 1$ તો
સુરેખ સમીકરણ સંહતિ $x + y + z = 1;x + ay + z = 1;ax + by + z = 0$ ને ઉકેલ ન હોય તે માટેની $'b'$ ની ભિન્ન કિંમતોનો ગણ જો $S$ હોય તો , $S$ એ . ..
સુરેખ સમીકરણોની સંહતિ $\lambda x+2 y+2 z=5$ ; $2 \lambda x+3 y+5 z=8$ ; $4 x+\lambda y+6 z=10$ ને . . . .
$\lambda $ ની કિમંતોનો ગણ . . . . થાય જો સુરેખ સમીકરણો $x - 2y - 2z = \lambda x$ ; $x + 2y + z = \lambda y$ ; $-x - y = \lambda z$ એ શૂન્યતર ઉકેલ હોય.