સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{a + x}&{a - x}&{a - x}\\{a - x}&{a + x}&{a - x}\\{a - x}&{a - x}&{a + x}\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.

  • A

    $x = 0,x = 4a$

  • B

    $x = 0,x = a$

  • C

    $x = 0,x = 2a$

  • D

    $x = 0,x = 3a$

Similar Questions

ધારોકે $s$ એ $\theta \in[-\pi, \pi]$ ની એવી તમામ કિંમતોનો ગણ છે જેના માટે સુરેખ સમીકરણ સંહતિ

$x+y+\sqrt{3} z=0$

$-x+(\tan \theta) y+\sqrt{7} z=0$

$x+y+(\tan \theta) z=0$

ને અસાહજિક $(non-trivial)$ ઉકેલ છે.તો $\frac{120}{\pi} \sum_{\theta \in s} \theta=.........$

  • [JEE MAIN 2023]

$\left| {\begin{array}{*{20}{c}}
1&x&y\\
2&{\sin x + 2x}&{\sin y + 2y}\\
3&{\cos x + 3x}&{\cos y + 3y}
\end{array}} \right|$ મેળવો.

$\alpha, \beta \in R$ માટે, ધારો કે સુરેખ સમીકરણ સંહતિ  $x-y+z=5$ ; $2 x+2 y+\alpha z=8$ ; $3 x-y+4 z=\beta$ ને અસંખ્ય ઉકેલો છે. તો $\alpha$ અને $\beta$ એ $........$ ના બીજ છે.

  • [JEE MAIN 2023]

જો રેખાઓ $x + 2ay + a = 0$, $x + 3by + b = 0$ અને $x + 4cy + c = 0$ એ સંગામી હોય તો $a$, $b$ અને $c$ એ   . . . . શ્રેણીમાં હોય .

સમીકરણની સંહતિ $x + y + z = 6$, $x + 2y + 3z = 10,x + 2y + \lambda z = \mu $ નો એકપણ ઉકેલ શક્ય ન હોય તો . . .