Verify Mean Value Theorem for the function $f(x)=x^{2}$ in the interval $[2,4]$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The function $f(x)=x^{2}$ is continuous in $[2,4]$ and differentiable in $(2,4)$ as its derivative $f^{\prime}(x)=2 x$ is defined in $(2,4).$

Now, $\quad f(2)=4$ and $f(4)=16 .$ Hence

$\frac{f(b)-f(a)}{b-a}=\frac{16-4}{4-2}=6$

$\mathrm{MVT}$ states that there is a point $c \in(2,4)$ such that $f^{\prime}(c)=6 .$ But $f^{\prime}(x)=2 x$ which implies $c=3 .$ Thus at $c=3 \in(2,4),$ we have $f^{\prime}(c)=6$

Similar Questions

Let $\mathrm{f}$ be any continuous function on $[0,2]$ and twice differentiable on $(0,2)$. If $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ and $f(2)=2$, then

  • [JEE MAIN 2021]

Let $f (x)$ and $g (x)$ be two continuous functions defined from $R \rightarrow R$, such that $f (x_1) > f (x_2)$ and $g (x_1) < g (x_2), \forall x_1 > x_2$ , then solution set of $f\,\left( {\,g({\alpha ^2} - 2\alpha )\,} \right) >f\,\left( {\,g(3\alpha - 4)\,} \right)$ is

If $c$ is a point at which Rolle's theorem holds for the function, $f(\mathrm{x})=\log _{\mathrm{e}}\left(\frac{\mathrm{x}^{2}+\alpha}{7 \mathrm{x}}\right)$ in the interval $[3,4],$ where $\alpha \in \mathrm{R},$ then $f^{\prime \prime}(\mathrm{c})$ is equal to

  • [JEE MAIN 2020]

For a real number $x$ let $[x]$ denote the largest number less than or equal to $x$. For $x \in R$ let $f(x)=[x] \sin \pi x$. Then,

  • [KVPY 2014]

Functions $f(x)$ and $g(x)$ are such that $f(x) + \int\limits_0^x {g(t)dt = 2\,\sin \,x\, - \,\frac{\pi }{2}} $ and $f'(x).g (x) = cos^2\,x$ , then number of solution $(s)$ of equation $f(x) + g(x) = 0$ in $(0,3 \pi$) is-