अंतराल $[2,4]$ में फलन $f(x)=x^{2}$ के लिए माध्यमान प्रमेय को सत्यापित कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The function $f(x)=x^{2}$ is continuous in $[2,4]$ and differentiable in $(2,4)$ as its derivative $f^{\prime}(x)=2 x$ is defined in $(2,4).$

Now, $\quad f(2)=4$ and $f(4)=16 .$ Hence

$\frac{f(b)-f(a)}{b-a}=\frac{16-4}{4-2}=6$

$\mathrm{MVT}$ states that there is a point $c \in(2,4)$ such that $f^{\prime}(c)=6 .$ But $f^{\prime}(x)=2 x$ which implies $c=3 .$ Thus at $c=3 \in(2,4),$ we have $f^{\prime}(c)=6$

Similar Questions

यदि मध्यमान प्रमेय से, $f'({x_1}) = \frac{{f(b) - f(a)}}{{b - a}}$, तो

बहुपदों $p: R \rightarrow R$, जिसके लिए $p(0)=0$, सभी $x \neq 0$ के लिए $p(x)>x^2$ तथा $p^{\prime \prime}(0)=$ $\frac{1}{2}$ है, की संख्या होगी :

  • [KVPY 2018]

इस प्रश्न में $[x]$ वह अधिकतम पूर्णांक है जो दी गयी वास्तविक संख्या $x$ से कम या बराबर है। दिये गए फलन $f(x)=[x] \sin \pi x$ पर विचार करें। निम्नलिखित में से कौन सा कथन उचित है:

  • [KVPY 2014]

माना $f(x) = \left\{ {\begin{array}{*{20}{c}}
  {{x^2}\ln x,\,x > 0} \\ 
  {0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0} 
\end{array}} \right\}$, तब $x \in [0,1]$ के लिए  $ f$  पर रोले की प्रमेय मान्य है, यदि $\alpha = $

  • [IIT 2004]

यदि फलन $f(x)=2 x^{3}+ a x^{2}+ b x$ के लिए अंतराल $[-1,1]$ में बिंदु $c =\frac{1}{2}$ पर रोले का प्रमेय लागू है, तो $2 a + b$ का मान है

  • [JEE MAIN 2015]