Verify the Gauss’s law for magnetic field of a point dipole of dipole moment ${{\rm{\vec m}}}$ at the origin for the surface which is a sphere of radius $\mathrm{R}$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Gauss's law of magnetism $\int \overrightarrow{\mathrm{B}} \cdot d \overrightarrow{\mathrm{S}}=0$.

Now, magnetic moment of dipole at origin "O" is along $z$-axis $\overrightarrow{\mathrm{M}}=\mathrm{M} \hat{k}$

Let $\mathrm{P}$ be a point at distance $r$ from $\mathrm{O}$ and OP makes an angle $\theta$ with $z$-axis component of $\overrightarrow{\mathrm{M}}$ along $\mathrm{OP}=\mathrm{M} \cos \theta$

Now, the magnetic field induction at P due to dipole of moment $\vec{M} \cos \theta$ is $\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{2 M \cos \theta}{r^{3}} \hat{r}$

From the diagram, $r$ is the radius of sphere with centre at O lying in $y z$-plane. Take an elementary area $d \overrightarrow{\mathrm{S}}$ of the surface at P, then

$\therefore d \overrightarrow{\mathrm{S}}=r(r \sin \theta) \hat{r}=r^{2} \sin \theta d \theta \hat{r}$

$\left.\therefore \int\right] \overrightarrow{\mathrm{B}} \cdot d \overrightarrow{\mathrm{S}}=\int \frac{\mu_{0}}{4 \pi} \frac{2 \mathrm{M} \cos \theta}{r^{3}} \hat{r}\left(r^{2} \sin \theta d \theta\right) \hat{r}$

$=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{r} \int_{0}^{2 \pi} 2 \sin \theta \cos \theta d \theta$

$=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{r} \int_{0}^{2 \pi} \sin 2 \theta d \theta$

$=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{r}\left(-\frac{\cos 2 \theta}{2}\right)_{0}^{2 \pi}$

$=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{r}\left[\frac{\cos 2 \theta}{2}\right]_{0}^{2 \pi}(\because \cos (-0)=\cos 4)$

$=-\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{2 r}[\cos 4 \pi-\cos 0]$

$=\frac{\mu_{0} \mathrm{M}}{4 \pi(2 r)}[1-1]=0$

901-s140

Similar Questions

The magnetic moment of a magnet of length $10\, cm$  and pole strength $ 4.0\, Am$  will be......$A{m^2}$

In the case of bar magnet, lines of magnetic induction

What happens to the force between magnetic poles when their pole strength and the distance between them are both doubled

What is the magnitude of the equatorial and axial fields due to a bar magnet of length $5.0 \;cm$ at a distance of $50\; cm$ from its mid-point? The magnetic moment of the bar magnet is $0.40\; A m ^{2}$.

The magnetic lines of force inside a bar magnet

  • [AIEEE 2003]