Verify the Gauss’s law for magnetic field of a point dipole of dipole moment ${{\rm{\vec m}}}$ at the origin for the surface which is a sphere of radius $\mathrm{R}$.
Gauss's law of magnetism $\int \overrightarrow{\mathrm{B}} \cdot d \overrightarrow{\mathrm{S}}=0$.
Now, magnetic moment of dipole at origin "O" is along $z$-axis $\overrightarrow{\mathrm{M}}=\mathrm{M} \hat{k}$
Let $\mathrm{P}$ be a point at distance $r$ from $\mathrm{O}$ and OP makes an angle $\theta$ with $z$-axis component of $\overrightarrow{\mathrm{M}}$ along $\mathrm{OP}=\mathrm{M} \cos \theta$
Now, the magnetic field induction at P due to dipole of moment $\vec{M} \cos \theta$ is $\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{2 M \cos \theta}{r^{3}} \hat{r}$
From the diagram, $r$ is the radius of sphere with centre at O lying in $y z$-plane. Take an elementary area $d \overrightarrow{\mathrm{S}}$ of the surface at P, then
$\therefore d \overrightarrow{\mathrm{S}}=r(r \sin \theta) \hat{r}=r^{2} \sin \theta d \theta \hat{r}$
$\left.\therefore \int\right] \overrightarrow{\mathrm{B}} \cdot d \overrightarrow{\mathrm{S}}=\int \frac{\mu_{0}}{4 \pi} \frac{2 \mathrm{M} \cos \theta}{r^{3}} \hat{r}\left(r^{2} \sin \theta d \theta\right) \hat{r}$
$=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{r} \int_{0}^{2 \pi} 2 \sin \theta \cos \theta d \theta$
$=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{r} \int_{0}^{2 \pi} \sin 2 \theta d \theta$
$=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{r}\left(-\frac{\cos 2 \theta}{2}\right)_{0}^{2 \pi}$
$=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{r}\left[\frac{\cos 2 \theta}{2}\right]_{0}^{2 \pi}(\because \cos (-0)=\cos 4)$
$=-\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{2 r}[\cos 4 \pi-\cos 0]$
$=\frac{\mu_{0} \mathrm{M}}{4 \pi(2 r)}[1-1]=0$
The magnetic moment of a magnet of length $10\, cm$ and pole strength $ 4.0\, Am$ will be......$A{m^2}$
In the case of bar magnet, lines of magnetic induction
What happens to the force between magnetic poles when their pole strength and the distance between them are both doubled
What is the magnitude of the equatorial and axial fields due to a bar magnet of length $5.0 \;cm$ at a distance of $50\; cm$ from its mid-point? The magnetic moment of the bar magnet is $0.40\; A m ^{2}$.
The magnetic lines of force inside a bar magnet