Verify the Gauss’s law for magnetic field of a point dipole of dipole moment ${{\rm{\vec m}}}$ at the origin for the surface which is a sphere of radius $\mathrm{R}$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Gauss's law of magnetism $\int \overrightarrow{\mathrm{B}} \cdot d \overrightarrow{\mathrm{S}}=0$.

Now, magnetic moment of dipole at origin "O" is along $z$-axis $\overrightarrow{\mathrm{M}}=\mathrm{M} \hat{k}$

Let $\mathrm{P}$ be a point at distance $r$ from $\mathrm{O}$ and OP makes an angle $\theta$ with $z$-axis component of $\overrightarrow{\mathrm{M}}$ along $\mathrm{OP}=\mathrm{M} \cos \theta$

Now, the magnetic field induction at P due to dipole of moment $\vec{M} \cos \theta$ is $\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{2 M \cos \theta}{r^{3}} \hat{r}$

From the diagram, $r$ is the radius of sphere with centre at O lying in $y z$-plane. Take an elementary area $d \overrightarrow{\mathrm{S}}$ of the surface at P, then

$\therefore d \overrightarrow{\mathrm{S}}=r(r \sin \theta) \hat{r}=r^{2} \sin \theta d \theta \hat{r}$

$\left.\therefore \int\right] \overrightarrow{\mathrm{B}} \cdot d \overrightarrow{\mathrm{S}}=\int \frac{\mu_{0}}{4 \pi} \frac{2 \mathrm{M} \cos \theta}{r^{3}} \hat{r}\left(r^{2} \sin \theta d \theta\right) \hat{r}$

$=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{r} \int_{0}^{2 \pi} 2 \sin \theta \cos \theta d \theta$

$=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{r} \int_{0}^{2 \pi} \sin 2 \theta d \theta$

$=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{r}\left(-\frac{\cos 2 \theta}{2}\right)_{0}^{2 \pi}$

$=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{r}\left[\frac{\cos 2 \theta}{2}\right]_{0}^{2 \pi}(\because \cos (-0)=\cos 4)$

$=-\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M}}{2 r}[\cos 4 \pi-\cos 0]$

$=\frac{\mu_{0} \mathrm{M}}{4 \pi(2 r)}[1-1]=0$

901-s140

Similar Questions

A closely wound solenoid of $800$ turns and area of cross section $2.5 \times 10^{-4} \;m ^{2}$ carries a current of $3.0\; A .$ Explain the sense in which the solenoid acts like a bar magnet. What is its associated magnetic moment?

Draw field lines on a bar magnet, a current carrying finite solenoid and electric dipole.

What happens when the small bar magnet kept on the glass and iron filings sprinkled on glass ?

The magnetic potential due to a magnetic dipole at a point on its axis situated at a distance of $20 \mathrm{~cm}$ from its center is $1.5 \times 10^{-5} \  \mathrm{Tm}$. The magnetic moment of the dipole is___________ $\mathrm{Am}^2$. (Given : $\frac{\mu_0}{4 \pi}=10^{-7} \  \mathrm{TmA}^{-1}$ )

  • [JEE MAIN 2024]

Many of the diagrams given in Figure show magnetic field lines (thick lines in the figure) wrongly. Point out what is wrong with them. Some of them may describe electrostatic field lines correctly. Point out which ones.