Gujarati
Hindi
9-1.Fluid Mechanics
normal

Water drop whose radius is $0.0015\, mm$ is falling through the air. If the coefficient of viscosity of air is $1.8 \times 10^{-5}\, kg/m-s$, then assuming buoyancy force as negligible the terminal velocity of the dorp will be

A

$2.72 \times {10^{ - 4}}\,m/s$

B

$2.72 \times {10^{ - 3}}\,m/s$

C

$2.72 \times {10^{ - 2}}\,m/s$

D

$2.72 \times {10^{ - 1}}\,m/s$

Solution

From Stoke's law the terminal velocity of water drop assuming buoyancy froce negligible, is

$\mathrm{v}=\frac{2}{9} \frac{\mathrm{r}^{2} \rho \mathrm{g}}{\eta}$

$=\frac{2}{9} \times \frac{\left(1.5 \times 10^{-6}\right)^{2}\left(1.0 \times 10^{3}\right) \times 9.8}{1.8 \times 10^{-5}}$

$=2.72 \times 10^{-4} \mathrm{m} / \mathrm{s}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.