We can reduce random errors by
Taking large number of observations
Corrected zero error
By following proper technique of experiment
Both $(a)$ and $(c)$
Two resistors of resistances $R_1 = (100 \pm 3) \,\Omega $ and $R_2 = (200 \pm 4)$ are connected in series. The maximm absolute error and percentage error in equivalent resistance of the series combination is
In order to determine the Young's Modulus of a wire of radius $0.2\, cm$ (measured using a scale of least count $=0.001\, cm )$ and length $1 \,m$ (measured using a scale of least count $=1\, mm$ ), a weight of mass $1\, kg$ (measured using a scale of least count $=1 \,g$ ) was hanged to get the elongation of $0.5\, cm$ (measured using a scale of least count $0.001\, cm$ ). What will be the fractional error in the value of Young's Modulus determined by this experiment? (in $\%$)
Two resistors of resistances $R_1 = (300 \pm 3) \,\Omega $ and $R_2 = (500 \pm 4)$ are connected in series. The equivalent resistance of the series combination is
In a simple pendulum experiment for determination of acceleration due to gravity $(g)$, time taken for $20$ oscillations is measured by using a watch of $1\, second$ least count. The mean value of time taken comes out to be $30\,s$. The length of pendulum is measured by using a meter scale of least count $1\, mm$ and the value obtained is $55.0\, cm$. The percentage error in the determination of $g$ is close to ........... $\%$
The length of a cylinder is measured with a metre rod having least count $0.1 \;cm$. Its diameter is measured with vernier calipers having least count $0.01\; cm$. If the length and diameter of the cylinder are $5.0\; cm$ and $2.00\; cm$, respectively, then the percentage error in the calculated value of volume will be