Durring Searle's experiment, zero of the Vernier scale lies between $3.20 \times 10^{-2} m$ and $3.25 \times 10^{-2} m$ of the main scale. The $20^{\text {th }}$ division of the Vernier scale exactly coincides with one of the main scale divisions. When an additional load of $2 \ kg$ is applied to the wire, the zero of the Vernier scale still lies between $3.20 \times 10^{-2} m$ and $3.25 \times 10^{-2} m$ of the main scale but now the $45^{\text {th }}$ division of Vernier scale coincides with one of the main scale divisions. The length of the thin metallic wire is $2 m$. and its cross-sectional area is $8 \times 10^{-7} m ^2$. The least count of the Vernier scale is $1.0 \times 10^{-5} m$. The maximum percentage error in the Young's modulus of the wire is
$8$
$7$
$6$
$5$
The percentage errors in the measurement of mass and speed are $2\%$ and $3\%$ respectively. How much will be the maximum error in the estimation of the kinetic energy obtained by measuring mass and speed ......... $\%$
A cylindrical wire of mass $(0.4 \pm 0.01)\,g$ has length $(8 \pm 0.04)\,cm$ and radius $(6 \pm 0.03)\,mm$.The maximum error in its density will be $......\,\%$
If the length of a cylinder is $l=(4.00 \pm 0.01) cm$, radius $r =(0.250 \pm 0.001) \;cm$ and mass $m =6.25 \pm 0.01\; g$. Calculate the percentage error in determination of density.
Write rule for error produced in result due to addition and subtraction of error.