Gujarati
1.Units, Dimensions and Measurement
normal

Durring Searle's experiment, zero of the Vernier scale lies between $3.20 \times 10^{-2} m$ and $3.25 \times 10^{-2} m$ of the main scale. The $20^{\text {th }}$ division of the Vernier scale exactly coincides with one of the main scale divisions. When an additional load of $2 \ kg$ is applied to the wire, the zero of the Vernier scale still lies between $3.20 \times 10^{-2} m$ and $3.25 \times 10^{-2} m$ of the main scale but now the $45^{\text {th }}$ division of Vernier scale coincides with one of the main scale divisions. The length of the thin metallic wire is $2 m$. and its cross-sectional area is $8 \times 10^{-7} m ^2$. The least count of the Vernier scale is $1.0 \times 10^{-5} m$. The maximum percentage error in the Young's modulus of the wire is

A

$8$

B

$7$

C

$6$

D

$5$

(IIT-2014)

Solution

Observation $-1$

Let weight used is $W _1$, extension $\ell_1$

$W_1$, $\ell_1$

$y =\frac{ W _1 / A }{\ell_1 / L } \Rightarrow W _1=\frac{ yA \ell_1}{ L } \quad \ell_1=3.2 \times 10^{-2}+20 \times 10^{-5}$

Observation $-2$

Let weight used is $W _2$ extension $\ell_2$

$W _2$, $\ell_2$

$y =\frac{ W _2 / A }{\ell_2 / L } \Rightarrow W _1=\frac{ yA \ell_2}{ L } \quad \ell_1=3.2 \times 10^{-2}+45 \times 10^{-5}$

$W _2- W _1=\frac{y A}{L}\left(\ell_2-\ell_1\right) \Rightarrow y=\frac{\left(W_2-W_1\right) / L}{y A\left(\ell_2-\ell_1\right)} $

$\left(\frac{\Delta y}{y}\right)_{\max }=\frac{\Delta \ell_2+\Delta \ell_1}{\ell_2-\ell_1}=\frac{2 \times 10^{-5}}{25 \times 10^{-5}} $

$\left(\frac{\Delta y}{y}\right)_{\max } \times 100 \% \quad=\frac{2}{25} \times 100 \%=8 \%$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.