એક વિદ્યાર્થી પ્રયોગશાળામાં તારની જાડાઈ સ્ક્રૂગેજની મદદથી માપે છે. તેના આવલોકનો $1.22 \,mm , 1.23 \,mm , 1.19 \,mm$ , $1.20 \,mm$ છે. પ્રતિશત ત્રૂટિ $\frac{x}{121} \%$ છે. $x$ નું મૂલ્ય કેટલું હશે?
લંબચોરસની લંબાઈ અને પહોળાઈ અનુક્રમે $(5.7 \pm 0.1) cm $ અને $(3.4 \pm 0.2) cm$ છે. ત્રુટિ મર્યાદામાં લંબચોરસનું ક્ષેત્રફળ ...મળે.
સાદા લોલકના પ્રયોગમાં લોલકનો આવર્તકાળ $T=2 \pi \sqrt{\frac{l}{g}}$ પરથી માપવામાં આવે છે. જો આવર્તકાળ અને લંબાઈના માપનમાં મહત્તમ પ્રતિશત ત્રુટિ અનુક્રમે $2 \% $ અને $ 2 \% $ હોય, તો $g$ ના માપનમાં મળતી મહત્તમ પ્રતિશત ત્રુટિ ......... $\%$ હોય.
આપણે અવ્યવસ્થિત ત્રુટિ ને શેના દ્વારા ધટાડી શકીએ છીએ?
સાદા લોલકનો આવર્તકાળ $ T = 2\pi \sqrt {\frac{l}{g}} $ હોય, જયાં $l=100\, cm$ અને તેમાં ખામી $1\,mm$ છે.આવર્તકાળ $2 \,sec$ છે.$100$ દોલનો માટેનો સમય $0.1 \,s$ લઘુતમ માપશકિત ધરાવતી ઘડિયાળ વડે માપવામાં આવે છે.તો ગુરુત્વપ્રવેગ $g$ માં પ્રતિશત ખામી ...... $\%$ થશે.