- Home
- Standard 11
- Physics
$R $ ત્રિજયાની શિરોલંબ લૂપમાં $m$ દ્રવ્યમાનના કોઇ પદાર્થને કેટલા લઘુતમ વેગથી દાખલ કરાવવો જોઇએ કે જેથી તે લૂપમાં સંપૂર્ણ દાખલ થઇ શકે?
$\sqrt {2gR} $
$\;\sqrt {5gR} $
$\;\sqrt {3gR} $
$\;\sqrt {gR} $
Solution

Let the tension at point $A$ be $T_{A} .$ So, from Newton's second law
$T_{A}-m g=\frac{m v_{c}^{2}}{R}$
Energy at point $A=\frac{1}{2} m v_{0}^{2}$ $…(i)$
Energy at point $C$ is
$\frac{1}{2} m v_{c}^{2}+m g \times 2 R \ldots .$ $…(ii)$
Applying Newton's second law at point $C$
$T_{c}+m g=\frac{m v_{c}^{2}}{R}$
To complete the loop $T_{c} \geq 0$
So, $m g=\frac{m v_{c}^{2}}{R}$
$\Rightarrow \quad v_{c}=\sqrt{g R}$ $…(ii)$
From Eqs. $(i)$ and $(ii)$ by conservation of energy
$\frac{1}{2} m v_{0}^{2}=\frac{1}{2} m v_{c}^{2}+2 m g R$
$\Rightarrow \quad \frac{1}{2} m v_{0}^{2}=\frac{1}{2} m g R+2 m g R \quad\left(\because v_{c}=\sqrt{g R}\right)$
$\Rightarrow \quad v_{0}^{2}=g R+4 g R$
$\Rightarrow \quad v_{0}=\sqrt{5 g R}$