What is the unit vector perpendicular to the following vectors $2\hat i + 2\hat j - \hat k$ and $6\hat i - 3\hat j + 2\hat k$
$\frac{{\hat i + 10\hat j - 18\hat k}}{{5\sqrt {17} }}$
$\frac{{\hat i - 10\hat j + 18\hat k}}{{5\sqrt {17} }}$
$\frac{{\hat i - 10\hat j - 18\hat k}}{{5\sqrt {17} }}$
$\frac{{\hat i + 10\hat j + 18\hat k}}{{5\sqrt {17} }}$
For three vectors $\vec{A}=(-x \hat{i}-6 \hat{j}-2 \hat{k})$, $\vec{B}=(-\hat{i}+4 \hat{j}+3 \hat{k})$ and $\vec{C}=(-8 \hat{i}-\hat{j}+3 \hat{k})$, if $\overrightarrow{\mathrm{A}} \cdot(\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{C}})=0$, them value of $\mathrm{x}$ is. . . . . ..
The angle made by the vector $\left( {\hat i\,\, + \;\,\hat j} \right)$ with $x-$ axis and $y$ axis is
If $\overrightarrow A \times \overrightarrow B = \overrightarrow C + \overrightarrow D,$ then select the correct alternative-
If diagonals of a parallelogram are $\left( {5\hat i - 4\hat j + 3\hat k} \right)$ and $\left( {3\hat i + 2\hat j - \hat k} \right)$ then its area is