When a ball is freely fallen from a given height it bounces to $80\%$ of its original height. What fraction of its mechanical energy is lost in each bounce ?
$0.20$
$0.60$
$0.40$
$1$
Figure shows the vertical section of frictionless surface. A block of mass $2\, kg$ is released from the position $A$ ; its $KE$ as it reaches the position $C$ is ............ $\mathrm{J}$
A uniform chain of length $L$ and mass $M$ is lying on a smooth table and one third of its length is hanging vertically down over the edge of the table. If $g$ is acceleration due to gravity, work required to pull the hanging part on to the table is
A body of mass ${M_1}$ collides elastically with another mass ${M_2}$ at rest. There is maximum transfer of energy when
Two bodies of masses $0.1\, kg$ and $0.4\, kg$ move towards each other with the velocities $1\, m/s$ and $0.1\, m/s$ respectively. After collision they stick together. In $10\, sec$ the combined mass travels ............... $\mathrm{m}$
System shown in figure is released from rest. Pulley and spring are massless and the friction is absent everywhere. The speed of $5\, kg$ block, when $2\, kg$ block leaves the contact with ground is (take force constant of the sprign $k = 40\, N/m$ and $g = 10\, m/s^2$)