જ્યારે એક $m$ દળના કણને $k$ સ્પ્રિંગ અચળાંક ધરાવતી શિરોલંબ સ્પ્રિંગ સાથે જોડીને મુક્ત કરતાં તે $y ( t )= y _{0} \sin ^{2} \omega t $ મુજબ ગતિ કરે છે, જ્યાં $'y'$ એ ખેંચાયા વગરની સ્પ્રિંગની નીચેના ભાગેથી માપવામાં આવે છે. તો તેના માટે $\omega$ કેટલો હશે?

  • [JEE MAIN 2020]
  • A

    $\sqrt{\frac{g}{y_{0}}}$

  • B

    $\sqrt{\frac{g}{2 y_{0}}}$

  • C

    $\frac{1}{2} \sqrt{\frac{g}{y_{0}}}$

  • D

    $\sqrt{\frac{2 g}{y_{0}}}$

Similar Questions

આકૃતિમાં દર્શાવ્યા અનુસાર દેઢ આધારો વચ્ચે $k$ સ્પ્રિંગ અચળાંકવાળી બે સ્પ્રિંગો સાથે $m$ દળના બ્લોકને જોડેલો છે. જ્યારે $m$ દળના બ્લોકને સંતુલન સ્થાનથી જમણી બાજુ $x$ જેટલો ખસેડવામાં આવે ત્યારે બ્લોક પર લાગતું પુનઃસ્થાપક બળ શોધો. 

જયારે સ્પ્રિંગ સાથે $M$ દળ લગાવીને સરળ આવર્તગતિ કરાવવામાં આવે છે.ત્યારે આવર્તકાળ $T$ છે.જયારે દળમાં $m$ નો વઘારો કરવામાં આવે છે.ત્યારે આવર્તકાળ $ \frac{{5T}}{4} $ છે.તો $ \frac{m}{M} $ =_______

$10\, N$ ના બળ દ્વારા એક સ્પ્રિંગને $5\, cm$ જેટલી ખેંચવામાં આવે છે. જ્યારે $2\, kg$ નું દળ લટકાવવામાં આવે તો દોલનોનો આવર્તકાળ $.....\,s$ છે.

  • [NEET 2021]

દળ $m$ ને સ્પ્રિંગના નીચલા છેડાથી બાંધેલો છે જેનો ઉપરનો છેડો જડિત છે. સ્પ્રિંગનું દળ અવગણ્ય છે. જ્યારે $m$ દળને સહેજ ખેંચવામાં આવે અને છોડવામાં આવે છે, ત્યારે તે $3$ સેકન્ડના આવર્તકાળથી દોલનો કરે છે. જ્યારે દળ $m$ માં $1\; kg$ નો વધારો થાય, તો દોલનનો આવર્તકાળ $5\; s$ થાય છે. $m$ નું મૂલ્ય $kg$ માં કેટલું હશે?

  • [NEET 2016]

સ્વાધ્યાયમાં, ચાલો આપણે જ્યારે સ્પ્રિંગ ખેંચાયેલી ના હોય ત્યારની દ્રવ્યમાનની સ્થિતિને $x = 0$ લઈએ અને ડાબાથી જમણી તરફની દિશાને $X-$ અક્ષની ધન દિશા તરીકે લઈએ. દોલન કરતાં આ દ્રવ્યમાન આપણે જ્યારે સ્ટૉપવૉચ શરૂ કરીએ $(t = 0)$ તે ક્ષણે આ દ્રવ્યમાન

$(a)$ મધ્યમાન સ્થાને

$(b) $ મહત્તમ ખેંચાયેલા સ્થિતિ પર, અને

$(c)$ મહત્તમ સંકોચિત સ્થિતિ પર હોય તે દરેક કિસ્સા માટે $x$ ને $t$ ના વિધેય તરીકે દર્શાવો.

સ.આ.ગ. માટેનાં આ વિધેયો આવૃત્તિમાં, કંપવિસ્તારમાં અથવા પ્રારંભિક કાળમાં બીજા કરતાં કેવી રીતે અલગ પડે છે ?