जब, किसी ऊर्ध्वाधर कमानी (कमानी स्थिरांक $= k$ ) से लटके $m$ द्रव्यमान के एक कण को खींचकर छोड़ दिया जाता है तो उसकी गति को समीकरण, $y ( t )= y _{0} \sin ^{2} \omega t$ से दिया जाता है। जहाँ $'y'$ को अतानित (unstretched) कमानी के निचले सिरे से मापा जाता है, तो $\omega$ का मान होगा ?
$\sqrt{\frac{g}{y_{0}}}$
$\sqrt{\frac{g}{2 y_{0}}}$
$\frac{1}{2} \sqrt{\frac{g}{y_{0}}}$
$\sqrt{\frac{2 g}{y_{0}}}$
प्रदर्शित चित्र में एक द्रव्यमान $m$ दो स्प्रिंगों से जुड़ा है। दोनों स्प्रिंगो के स्प्रिंग नियतांक $K_1$ व $K_2$ है। घर्षण रहित सतह के लिए, द्रव्यमान $m$ के दोलन का आवर्तकाल है:
घर्षणहीन क्षैतिज तल पर पड़ी हुई $k$ बल स्थिरांक की द्रव्यमान रहित स्प्रिंग के एक सिरे से $m$ द्रव्यमान का कण जुड़ा हुआ है। इस स्प्रिंग का दूसरा सिरा बद्ध है। यह कण अपनी साम्यावस्था से समय $t=0$ पर प्रारम्भिक क्षैतिज वेग $u_0$ से गतिमान हो रहा है। जब कण की गति $0.5 u_0$ होती है, यह एक दृढ़ दीवार से प्रत्यास्थ संघट्ट करता है। इस संघट्ट के बाद -
$(A)$ जब कण अपनी साम्यावस्था से लौटता है इसकी गति $u_0$ होती है।
$(B)$ जब कण अपनी साम्यावस्था से पहली बार गुजरता है वह समय $t=\pi \sqrt{\frac{m}{k}}$ है।
$(C)$ जब स्प्रिंग से सम्पीड़न अधिकतम होता है वह समय $t =\frac{4 \pi}{3} \sqrt{\frac{ m }{ k }}$ है।
$(D)$ जब कण अपनी साम्यावस्था से दूसरी बार गुजरता है वह समय $t =\frac{5 \pi}{3} \sqrt{\frac{ m }{ k }}$ है।
$M_1$और $M_2$ दो द्रव्यमान $K$ नियतांक वाली किसी द्रव्यमान विहीन स्प्रिंग से चित्र में दिखाये अनुसार लटके हैं। संतुलन की अवस्था में, निकाय को प्रभावित न करके यदि $M_1$ को धीरे से हटा लिया जाये तो दोलन का आयाम होगा
जब $m$ द्रव्यमान को किसी स्प्रिंग से जोड़ा जाता है तो इसकी लम्बाई में $0.2$ मीटर की वृद्धि हो जाती है। $m$ द्रव्यमान को थोड़ा सा अतिरिक्त खींच कर छोड़ देने पर इसका आवर्तकाल होगा
एक $6.4\, N$ के बल द्वारा एक ऊध्र्वाधर स्प्रिंग की लम्बाई में $0.1 \,m$ की वृद्धि होती है। ऊध्र्वाधर स्प्रिंग से कितना .... $kg$ द्रव्यमान लटकाया जाये ताकि यह $\left( {\frac{\pi }{4}} \right)sec$ के आवर्तकाल से दोलन करे