When a tuning fork is vibrating, the vibrations of the two prongs
Are in phase
Differ in phase by $45^o$
Differ in phase by $90^o$
Differ in phase by $180^o$
A uniform rope of length $L$ and mass $m_1$ hangs vertically from a rigid support. A block of mass $m_2$ is attached to the free end of the rope. A transverse pulse of wavelength $\lambda _1$ is produced at the lower end of the rope. The wavelength of the pulse when it reaches the top of the rope is $\lambda _2$. The ratio $\lambda _2/\lambda _1$ is
A wave travelling along the $x-$ axis is described by the equation $y \,(x, t ) = 0.005\, cos \,\left( {\alpha x - \beta t} \right)$. If the wavelength and the time period of the wave are $0.08\,m$ and $2.0\, s$ respectively then $a$ and $b$ in appropriate units are
A small source of sound moves on a circle as shown in the figure and an observer is standing on $O.$ Let $n_1,\, n_2$ and $n_3$ be the frequencies heard when the source is at $A, B$ and $C$ respectively. Then
A car sounding its horn at $480\,Hz$ moves towards a high wall at a speed of $20\,m/s$. If the speed of sound is $340\,m/s,$ the frequency of the reflected sound heard by the passenger sitting in the car will be the nearest to ..... $Hz$
A train standing at the outer signal of a railway station blows a whistle of frequency $400\, Hz$ in still air. What is the frequency of the whistle for a platform observer when the train recedes from the platform with a speed of $10\, m/s$ ...... $Hz$ . (Speed of sound $= 340\, m/s$)