When a uniform wire of radius $r$ is stretched by a $2kg$ weight, the increase in its length is $2.00\, mm$. If the radius of the wire is $r/2$ and other conditions remain the same, the increase in its length is .......... $mm$
$2.00$
$4.00$
$6.00$
$8.00$
Young's moduli of the material of wires $A$ and $B$ are in the ratio of $1: 4$, while its area of cross sections are in the ratio of $1: 3$. If the same amount of load is applied to both the wires, the amount of elongation produced in the wires $A$ and $B$ will be in the ratio of
[Assume length of wires $A$ and $B$ are same]
Two wires of same length and radius are joined end to end and loaded. The Young's modulii of the materials of the two wires are $Y_{1}$ and $Y_{2}$. The combination behaves as a single wire then its Young's modulus is:
What is bending ? How bending problems prevents and what is buckling ?
An aluminum rod (Young's modulus $ = 7 \times {10^9}\,N/{m^2})$ has a breaking strain of $0.2\%$. The minimum cross-sectional area of the rod in order to support a load of ${10^4}$Newton's is
Give the relation between shear modulus and Young’s modulus.