કોઈ સંખ્યા $\alpha $ માટે ચડતો કર્મ મેળવો.
${\log _2}\alpha ,\,{\log _3}\alpha ,\,{\log _e}\alpha ,\,{\log _{10}}\alpha $
${\log _{10}}\alpha ,\,{\log _3}\alpha ,{\log _e}\alpha ,{\log _2}\alpha $
${\log _{10}}\alpha ,\,{\log _e}\alpha ,\,{\log _2}\alpha ,\,{\log _3}\alpha $
${\log _3}\alpha ,\,{\log _e}\alpha ,\,{\log _2}\alpha ,\,{\log _{10}}\alpha $
${\log _2}.{\log _3}....{\log _{100}}{100^{{{99}^{{{98}^{{.^{{.^{{{.2}^1}}}}}}}}}}}= . . . $.
જો ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ તો $x$ ની .. . . . અંતરાલમાં છે.
$\sqrt {(\log _{0.5}^24)} = . . $. .
${\log _3}\,4{\log _4}\,5{\log _5}\,6{\log _6}\,7{\log _7}\,8{\log _8}\,9= . .$ . .
જો $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ તો