Basic of Logarithms
hard

${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.

A

$\left( { - \infty ,\,2} \right]$

B

$[2,\,4]$

C

$\left[ {4, + \infty } \right)$

D

એકપણ નહી.

Solution

(b) ${\log _{1/2}}({x^2} – 6x + 12) \ge – 2$…..$(i)$

For log to be defined, ${x^2} – 6x + 12 > 0$

$ \Rightarrow $${(x – 3)^2} + 3 > 0$, which is true $\forall x \in R$.

From $(i),$ ${x^2} – 6x + 12 \le {\left( {{1 \over 2}} \right)^{ – 2}}$

$ \Rightarrow $${x^2} – 6x + 12 \le 4$ $ \Rightarrow $ ${x^2} – 6x + 8 \le 0$

$ \Rightarrow $ $(x – 2)(x – 4) \le 0$ $ \Rightarrow $ $2 \le x \le 4$;

$\therefore x \in [2,\,4]$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.