Which of the following correctly represents the variation of electric potential $(V)$ of a charged spherical conductor of radius $(R)$ with radial distance $(r)$ from the centre?
A solid conducting sphere having a charge $Q$ is surrounded by an uncharged concentric conducting hollow spherical shell. Let the potential difference between the surface of the solid sphere and that of the outer surface of the hollow shell be $V$. If the shell is now given a charge of $-3Q$, the new potential difference between the same two surfaces is......$V$
Two non-conducting spheres of radii $R_1$ and $R_2$ and carrying uniform volume charge densities $+\rho$ and $-\rho$, respectively, are placed such that they partially overlap, as shown in the figure. At all points in the overlapping region: $Image$
$(A)$ the electrostatic field is zero
$(B)$ the electrostatic potential is constant
$(C)$ the electrostatic field is constant in magnitude
$(D)$ the electrostatic field has same direction
An infinite number of charges each equal to $0.2\,\mu C$ are arranged in a line at distances $1\,m, 2\,m, 4\,m, 8\,m......$ from a fixed point. The potential at fixed point is ......$kV$
$27$ identical drops are charged at $22\, V\,\,each.$ They combine to form a bigger drop. The potential of the bigger drop will be............ $V.$
Some charge is being given to a conductor. Then its potential is