Equal charges are given to two spheres of different radii. The potential will
Be more on the smaller sphere
Be more on the bigger sphere
Be equal on both the spheres
Depend on the nature of the materials of the spheres
Two non-conducting spheres of radii $R_1$ and $R_2$ and carrying uniform volume charge densities $+\rho$ and $-\rho$, respectively, are placed such that they partially overlap, as shown in the figure. At all points in the overlapping region: $Image$
$(A)$ the electrostatic field is zero
$(B)$ the electrostatic potential is constant
$(C)$ the electrostatic field is constant in magnitude
$(D)$ the electrostatic field has same direction
Two thin concentric hollow conducting spheres of radii $R_1$ and $R_2$ bear charges $Q_1$ and $Q_2$ respectively. If $R_1 < R_2$, then the potential of a point at a distance $r$ from the centre $(R_1 < r < R_2)$ is
In a hollow spherical shell potential $(V)$ changes with respect to distance $(r)$ from centre
The electric field in a region surrounding the origin is uniform and along the $x$ - axis. A small circle is drawn with the centre at the origin cutting the axes at points $A, B, C, D$ having co-ordinates $(a, 0), (0, a), (-a, 0), (0, -a)$; respectively as shown in figure then potential in minimum at the point
$N$ identical spherical drops charged to the same potential $V$ are combined to form a big drop. The potential of the new drop will be