Which of the following function is surjective but not injective

  • A

    $f : R \to R$ $f (x) = x^4 + 2x^3 - x^2 + 1$

  • B

    $f : R \to R$ $f (x) = x^3 + x + 1$

  • C

    $f : R \to R^+ f (x) =$ $\sqrt {1 + {x^2}} \,$

  • D

    $f : R \to R f (x) = x^3 + 2x^2 - x + 1$

Similar Questions

Statement $1$ : If $A$ and $B$ be two sets having $p$ and $q$ elements respectively, where $q > p$. Then the total number of functions from set $A$ to set $B$ is $q^P$.
Statement $2$ : The total number of selections of $p$ different objects out of $q$ objects is ${}^q{C_p}$.

  • [AIEEE 2012]

Domain of $log\,log\,log\,  ....(x)$ is 

                        $ \leftarrow \,n\,\,times\, \to $

If $a+\alpha=1, b+\beta=2$ and $\operatorname{af}(x)+\alpha f\left(\frac{1}{x}\right)=b x+\frac{\beta}{x}, x \neq 0,$ then the value of expression $\frac{ f ( x )+ f \left(\frac{1}{ x }\right)}{ x +\frac{1}{ x }}$ is ..... .

  • [JEE MAIN 2021]

The total number of functions,$f:\{1,2,3,4\} \cdot\{1,2,3,4,5,6\}$   such that $f (1)+ f (2)= f (3)$, is equal to .

  • [JEE MAIN 2022]

Let $f(x)=\frac{x+1}{x-1}$ for all $x \neq 1$. Let $f^1(x)=f(x), f^2(x)=f(f(x))$ and generally $f^n(x)=f\left(f^{n-1}(x)\right)$ for $n>1$. Let $P=f^1(2) f^2(3) f^3(4) f^4(5)$ Which of the following is a multiple of $P$ ?

  • [KVPY 2012]