If $f:R \to R$ satisfies $f(x + y) = f(x) + f(y)$, for all $x,\;y \in R$ and $f(1) = 7$, then $\sum\limits_{r = 1}^n {f(r)} $ is
$\frac{{7n}}{2}$
$\frac{{7(n + 1)}}{2}$
$7n(n + 1)$
$\frac{{7n(n + 1)}}{2}$
Let $A = \left\{ {{x_1},{x_2},{x_3},.....,{x_7}} \right\}$ and $B = \left\{ {{y_1},{y_2},{y_3}} \right\}$ be two sets containing seven and three distinct elements respectively. Then the total number of functions $f:A \to B$ which are onto, if there exist exactly three elements $x$ in $A$ such that $f(x) = {y_2}$ , is equal to
The function $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ where $[.]$ denotes the greatest integer less than or equal to $x$ is defined for all $x$ belonging to
If the range of $f(x) = \frac{2x^2-14x^2-8x+49}{x^4-7x^2-4x+23}$ is ($a, b$], then ($a +b$) is
If $f(x)$ is a function satisfying $f(x + y) = f(x)f(y)$ for all $x,\;y \in N$ such that $f(1) = 3$ and $\sum\limits_{x = 1}^n {f(x) = 120} $. Then the value of $n$ is
Range of the function $f(x) = \frac{{{x^2}}}{{{x^2} + 1}}$ is