If $f:R \to R$ satisfies $f(x + y) = f(x) + f(y)$, for all $x,\;y \in R$ and $f(1) = 7$, then $\sum\limits_{r = 1}^n {f(r)} $ is

  • [AIEEE 2003]
  • A

    $\frac{{7n}}{2}$

  • B

    $\frac{{7(n + 1)}}{2}$

  • C

    $7n(n + 1)$

  • D

    $\frac{{7n(n + 1)}}{2}$

Similar Questions

Period of $f(x) = nx + n - [nx + n]$, $n \in N$

where [ ] denotes the greatest integer function is :

Let $A=\{(x, y): 2 x+3 y=23, x, y \in N\}$ and $B=\{x:(x, y) \in A\}$. Then the number of one-one functions from $\mathrm{A}$ to $\mathrm{B}$ is equal to ................

  • [JEE MAIN 2024]

The range of $f(x)=4 \sin ^{-1}\left(\frac{x^2}{x^2+1}\right)$ is

  • [JEE MAIN 2023]

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as

$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1 .$ Then, the value of $\sum_{\mathrm{k}=1}^{20} \frac{1}{\sin (\mathrm{k}) \sin (\mathrm{k}+\mathrm{f}(\mathrm{k}))}$ is equal to:

  • [JEE MAIN 2021]

Let $f : N \rightarrow R$ be a function such that $f(x+y)=2 f(x) f(y)$ for natural numbers $x$ and $y$. If $f(1)=2$, then the value of $\alpha$ for which

$\sum \limits_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)$ holds, is

  • [JEE MAIN 2022]