Which of the following functions cannot have their inverse defined ? (where $[.]\, \to$ greatest integer function)

  • A

    $f : R  \to R^+ ; y = e^x$

  • B

    $f : R^+ \to R ; y = log|x|$

  • C

    $f:\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right] \to [-1, 1]; y = sin^3x$

  • D

    $f : R \to R^+ ; y = e^{[x]}$

Similar Questions

Let $S=\{a, b, c\}$ and $T=\{1,2,3\} .$ Find $F^{-1}$ of the following functions $F$ from $S$ to $T$. if it exists.  $F =\{( a , 3),\,( b , 2),\,( c , 1)\}$

Let $f: R -\{3\} \rightarrow R -\{1\}$ be defined by $f(x)=\frac{x-2}{x-3} .$ Let $g: R \rightarrow R$ be given as $g ( x )=2 x -3$. Then, the sum of all the values of $x$ for which $f^{-1}( x )+ g ^{-1}( x )=\frac{13}{2}$ is equal to ...... .

  • [JEE MAIN 2021]

Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15 .$ Show that $f: N \rightarrow S ,$ where, $S$ is the range of $f,$ is invertible. Find the inverse of $f$

Which of the following function is inverse function

The inverse of $y=5^{\log x}$ is

  • [JEE MAIN 2021]