Let $S =\{1,2,3\} .$ Determine whether the functions $f: S \rightarrow S$ defined as below have inverses. Find $f^{-1}$, if it exists. $f=\{(1,1),\,(2,2),\,(3,3)\}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is easy to see that $f$ is one-one and onto, so that $f$ is invertible with the inverse $f^{-1}$ of $f$ given by $f^{-1}=\{(1,1),(2,2),(3,3)\}=f$

Similar Questions

If the function $f(x) = x^5 + e^{\frac {x}{5}}$ and $g(x) = f^{-1} (x)$ , then the value of $\frac{1}{{g'\left( {1 + {e^{1/5}}} \right)}}$ is

If $f$ be the greatest integer function and $g$ be the modulus function, then $(gof)\left( { - \frac{5}{3}} \right) - (fog)\left( { - \frac{5}{3}} \right) = $

If $f(x) = {x^2} + 1$, then ${f^{ - 1}}(17)$ and ${f^{ - 1}}( - 3)$ will be

If $X$ and $Y$ are two non- empty sets where $f:X \to Y$ is function is defined such that $f(c) = \left\{ {f(x):x \in C} \right\}$ for $C \subseteq X$ and ${f^{ - 1}}(D) = \{ x:f(x) \in D\} $ for $D \subseteq Y$ for any $A \subseteq X$ and $B \subseteq Y,$ then

  • [IIT 2005]

If $f : R \to R, f(x) = x^2 + 1$, then $f^{-1}(17)$ and $f^{-1}(-3)$ are