Which of the following graph represents the variations of acceleration due to gravity $(g)$ with distance $r$ from the centre of earth?
The radii of two planets are respectively $R_1$ and $R_2$ and their densities are respectively ${\rho _1}$ and ${\rho _2}$. The ratio of the accelerations due to gravity at their surfaces is
In a certain region of space, the gravitational field is given by $-k/r$ , where $r$ is the distance and $k$ is a constant. If the gravitational potential at $r = r_0$ be $V_0$ , then what is the expression for the gravitational potential $(V)$ ?
If the gravitational acceleration at surface of Earth is $g$, then increase in potential energy in lifting an object of mass $m$ to a height equal to half of radius of earth from surface will be
A satellite moving with velocity $v$ in a force free space collects stationary interplanetary dust at a rate of $\frac{{dM}}{{dt}} = \alpha v$ where $M$ is the mass (of satellite + dust) at that instant . The instantaneous acceleration of the satellite is
The value of $g$ at the surface of earth is $9.8 \,m / s ^2$. Then the value of ' $g$ ' at a place $480 \,km$ above the surface of the earth will be nearly .......... $m / s ^2$ (radius of the earth is $6400 \,km$ )