Sets $A$ and $B$ have $3$ and $6$ elements respectively. What can be the minimum number of elements in $A \cup B$
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$B \cap D$
Show that the following four conditions are equivalent:
$(i)A \subset B\,\,\,({\rm{ ii }})A - B = \phi \quad (iii)A \cup B = B\quad (iv)A \cap B = A$
Let $A$ and $B$ be two sets such that $n(A) = 0.16,\,n(B) = 0.14,\,n(A \cup B) = 0.25$. Then $n(A \cap B)$ is equal to
If $\mathrm{R}$ is the set of real numbers and $\mathrm{Q}$ is the set of rational numbers, then what is $\mathrm{R - Q} ?$