Show that the following four conditions are equivalent:
$(i)A \subset B\,\,\,({\rm{ ii }})A - B = \phi \quad (iii)A \cup B = B\quad (iv)A \cap B = A$
First, we have to show that $(i) \Leftrightarrow(i i)$
Let $A \subset B$
To show: $A-B \neq \varnothing$
If possible, suppose $A-B \neq \varnothing$
This means that there exists $x \in A, x \neq B,$ which is not possible as $A \subset B$
$\therefore A-B=\varnothing$
$\therefore A \subset B \Rightarrow A-B=\varnothing$
Let $A-B=\varnothing$
To show: $A \subset B$
Let $x \in A$
Clearly, $x \in B$ because if $x \notin B$, then $A-B \neq \varnothing$
$\therefore A-B=\varnothing \Rightarrow A \subset B$
$\therefore(i) \Leftrightarrow(i i)$
Let $A \subset B$
To show: $A \cup B=B$
Let $x \in A$
Clearly, $x \in B$ because if $x \notin B$, then $A-B \neq \varnothing$
$\therefore A-B=\varnothing \Rightarrow A \subset B$
$\therefore(i) \Leftrightarrow(i i)$
Let $A \subset B$
To show: $A \cup B=B$
Clearly, $B \subset A \cup B$
Let $x \in A \cup B$
$\Rightarrow x \in A$ or $x \in B$
Case $I:$ $x \in A$
$\Rightarrow x \in B$ $[\because A \subset B]$
$\therefore A \cup B \subset B$
Case $II:$ $x \in B$
Then, $A \cup B=B$
Conversely, let $A \cup B=B$
Let $x \in A$
$\Rightarrow x \in A \cup B \quad[\because A \subset A \cup B]$
$\Rightarrow x \in B \quad[\because A \cup B=B]$
$\therefore A \subset B$
Hence, $(i) \Leftrightarrow(\text {iii})$
Now, we have to show that $(i) \Leftrightarrow(i v)$
Let $A \subset B$
Clearly $A \cap B \subset A$
Let $x \in A$
We have to show that $x \in A \cap B$
As $A \subset B, x \in B$
$\therefore x \in A \cap B$
$\therefore A \subset A \cap B$
Hence, $A=A \cap B$
Conversely, suppose $A \cap B=A$
Let $x \in A$
$\Rightarrow x \in A \cap B$
$\Rightarrow x \in A$ and $x \in B$
$\Rightarrow x \in B$
$\therefore A \subset B$
Hence, $(i) \Leftrightarrow(i v)$
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$A \cup B \cup C$
Sets $A$ and $B$ have $3$ and $6$ elements respectively. What can be the minimum number of elements in $A \cup B$
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$A \cup C$
If $A, B$ and $C$ are non-empty sets, then $(A -B) \cup (B -A)$ equals
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap \left( {B \cup C} \right)$