From the sets given below, select equal sets:
$A=\{2,4,8,12\}, B=\{1,2,3,4\}, C=\{4,8,12,14\}, D=\{3,1,4,2\}$
$E=\{-1,1\}, F=\{0, a\}, G=\{1,-1\}, H=\{0,1\}$
$A=\{2,4,8,12\} ; B=\{1,2,3,4\} ; C=\{4,8,12,14\}$
$D=\{3,1,4,2\} ; E=\{-1,1\} ; F=\{0, a\}$
$G=\{1,-1\} ; H=\{0,1\}$
It can be seen that
$8 \in A, 8 \notin B, 8 \notin D, 8 \notin E, 8 \notin F, 8 \notin G, 8 \notin H$
$\Rightarrow A \neq B, A \neq D, A \neq E, A \neq F, A \neq G, A \neq H$
Also, $2 \in A, 2 \notin C$
$\therefore A \neq C$
$3 \in B, 3 \notin C, 3 \notin E, 3 \notin F, 3 \notin G, 3 \notin H$
$\therefore B \neq C, B \neq E, B \neq F, B \neq G, B \neq H$
$12 \in C, 12 \notin D, 12 \notin E, 12 \notin F, 12 \notin G, 12 \notin H$
$\therefore C \neq D, C \neq E, C \neq F, C \neq G, C \neq H$
$4 \in D, 4 \notin E, 4 \notin F, 4 \notin G, 4 \notin H$
$\therefore D \neq E, D \neq F, D \neq G, D \neq H$
Similarly, $E \neq F, E \neq G, E \neq H$
$F \neq G, F \neq H, G \neq H$
The order in which the elements of a set are listed is not significant.
$\therefore B=D$ and $E=G$
Hence, among the given sets, $B = D$ and $E = G$.
Let $A=\{1,2,\{3,4\}, 5\} .$ Which of the following statements are incorrect and why ?
$\{\varnothing\} \subset A$
State whether each of the following set is finite or infinite :
The set of animals living on the earth
Make correct statements by filling in the symbols $\subset$ or $ \not\subset $ in the blank spaces:
$\{ 2,3,4\} \ldots \{ 1,2,3,4,5\} $
In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example.
If $x \in A$ and $A \not\subset B$, then $x \in B$
Write the following intervals in set-builder form :
$\left[ {6,12} \right]$