Which of the following quantity/quantities are dependent on the choice of orientation of the co-ordinate axes?
$(a)$ $\vec{a}+\vec{b}$
$(b)$ $3 a_x+2 b_y$
$(c)$ $(\vec{a}+\vec{b}-\vec{c})$
Only $(b)$
Both $(a)$ and $(b)$
Both $(a)$ and $(c)$
Both $(b)$ and $(c)$
Magnitudes of two vector $\overrightarrow A $ and $\overrightarrow B $ are $4$ units and $3$ units respectively. If these vectors are $(i)$ in same direction $(\theta = 0^o).$ $(ii)$ in opposite direction $(\theta = 180^o)$, then give the magnitude of resultant vector.
The magnitude of vector $\overrightarrow A ,\,\overrightarrow B $ and $\overrightarrow C $ are respectively $12, 5$ and $13$ units and $\overrightarrow A + \overrightarrow B = \overrightarrow C $ then the angle between $\overrightarrow A $ and $\overrightarrow B $ is
Statement $I:$ If three forces $\vec{F}_{1}, \vec{F}_{2}$ and $\vec{F}_{3}$ are represented by three sides of a triangle and $\overrightarrow{{F}}_{1}+\overrightarrow{{F}}_{2}=-\overrightarrow{{F}}_{3}$, then these three forces are concurrent forces and satisfy the condition for equilibrium.
Statement $II:$ A triangle made up of three forces $\overrightarrow{{F}}_{1}, \overrightarrow{{F}}_{2}$ and $\overrightarrow{{F}}_{3}$ as its sides taken in the same order, satisfy the condition for translatory equilibrium.
In the light of the above statements, choose the most appropriate answer from the options given below:
Two vectors $\vec A$ and $\vec B$ have equal magnitudes. The magnitude of $(\vec A + \vec B)$ is $‘n’$ times the magnitude of $(\vec A - \vec B)$. The angle between $ \vec A$ and $\vec B$ is
The vectors $\vec{A}$ and $\vec{B}$ are such that
$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$
The angle between the two vectors is