નીચેનામાંથી ક્યું વિધાન ખોટું છે ?(જ્યાં $A$ $\&$ $B$ એ બે શૂન્ય ગણ નથી.)
$A - B = A \cap B'$
$A - B = A - (A \cap B)$
$A - B = A - B'$
$A - B = (A \cup B) - B$
પ્રાકૃતિક સંખ્યાઓના ગણને સાર્વત્રિક ગણ તરીકે લઈ, નીચે આપેલા ગણના પૂરક ગણ શોધો : $\{ x:x$ એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે. $\} $
પ્રાકૃતિક સંખ્યાઓના ગણને સાર્વત્રિક ગણ તરીકે લઈ, નીચે આપેલા ગણના પૂરક ગણ શોધો : $\{ x:x$ એ યુગ્મ પ્રાકૃતિક સંખ્યા છે. $\} $
જો $A$ એ કોઈ ગણ હોય તો. . . .
$U=\{1,2,3,4,5,6\}, A=\{2,3\}$ અને $B=\{3,4,5\}.$ $A^{\prime}, B^{\prime}, A^{\prime} \cap B^{\prime}, A \cup B$ શોધો અને તે પરથી બતાવો કે $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}.$
જો બે ગણો $A$ અને $B$ હોય ,તો $(A \cap B)'$ મેળવો.